Базовые операции с векторами на плоскости
Ошибка.
Попробуйте повторить позже
Докажите, что сумма векторов, ведущих из центра правильного -угольника в его вершины, равна .
Подсказка 1!
У нас есть абсолютно симметричная картинка, попробуйте использовать поворот: повернем картинку относительно центра на центральный угол, проанализировать, как изменится сумма.
Подсказка 2!
Попробуйте воспользоваться тем, что с одной стороны (из-за симметрии) сумма не должна измениться, но с другой, угол при каждом векторе уменьшается.
Пусть мы имеем дело с -угольником. То есть, мы хотим понять, чему равна сумма
векторов, идущих из центра этого -угольника к его вершинам. Обозначим
результат этой суммы за Т.е. пускай
Сделаем такой трюк: повернём наш -угольник на вокруг его центра. С одной стороны, раз мы
повернули картинку, то и результирующий вектор должен повернуться на С другой
стороны, понятно, что сумма от поворота не изменилась, ведь наш -угольник
как раз симметричен относительно такого поворота, т.е. при повороте на он перешёл сам в
себя.
Следовательно, вектор который является результирующим вектором суммы с
одной стороны не изменился, а с другой - повернулся на Но вектор, который не меняется при
повороте на любой ненулевой угол, может быть только Значит, тем самым, ничего не остаётся,
кроме как того, что Что и требовалось доказать.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!