Тема . Уравнения без логарифмов и тригонометрии

Использование монотонности функций в уравнениях без логарифмов и тригонометрии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68260

Решите уравнение

√ ---- √----x   √---- √ ----x  √----
( 2023+  2022)− ( 2023−  2022) =  8088

Источники: БИБН-2023, 11.2 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

Уравнение выглядит как-то пугающе и, наверное, классические методы решения здесь не подойдут. Попробуйте как-то поисследовать функцию в левой части уравнения.

Подсказка 2

Если исследовать функцию в левой части уравнения на монотонность, то можно понять, что она возрастает на всей области определения.

Подсказка 3

Левая часть уравнения возрастает, а правая - константа. Это говорит о единственности корня, который можно попробовать угадать.

Показать ответ и решение

Заметим, что √8088-=2√2022,  отсюда нетрудно видеть, что x= 1  является решением. Далее покажем, что функция в левой части строго возрастает на всей числовой прямой. Действительно, мы видим разность возрастающей (основание больше 1) и убывающей (основание меньше 1) показательных функций, которая строго возрастает. Отсюда равенство имеет не более одного решения, которое уже было найдено.

Ответ: 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!