Изогональное сопряжение
Ошибка.
Попробуйте повторить позже
В остроугольном неравнобедренном треугольнике высоты
и
пересекаются в точке
а медианы треугольника
пересекаются в точке
Прямая
делит отрезок
пополам. Найдите угол
Источники:
Подсказка 1
Заметим, что в нашей конструкции есть медиана (которую содержит отрезок CM), а также есть антипараллельность отрезков A’B’ и AB. На что в первую очередь намекает подобная конструкция?
Подсказка 2
Конечно, на симедиану! Симедианой будет являться направление CM к стороне AB, так как для стороны A’B’ - CM была медианой. Это означает, что СС₀ (где С₀ - середина AB) и СM - изогонали относительно угла ACB. А какие ещё изогонали относительно угла ACB есть в нашем треугольнике, если уже дана точка пересечения высот?
Подсказка 3
Верно, направление СН и СO (где О - центр описанной окружности). Но у нас нет точки O на рисунке. При этом у нас уже есть середина стороны AB и ортоцентр. Как тогда по-другому задать направление CO?
Подсказка 4
Да, по свойству ортоцентра! Можно отразить H относительно середины стороны BC и попасть в некоторую точку H’ на окружности. При этом О будет лежать на СН’. Значит, СH’ и CH - тоже изогонали относительно угла ACB. Что тогда можно сказать, если у нас есть пара изогоналей относительно одного угла?
Подсказка 5
Верно, что СС₀ и СМ - изогонали относительно угла H’CH. Тогда что можно сказать, основываясь на этом факте и на том, что С₀ - середина HH’?
Подсказка 6
Можно сказать, что СM - симедиана в треугольнике H’CH. При этом знаем, что CH’ и CH относятся как СA’ и CA (по св-ву ортоцентра в силу подобия треугольников CAH’ и CA’H), а они, в свою очередь, относятся как A’B’ к AB (в силу подобия CA’B’ и CAB). И по свойству ортоцентра такое отношение равно…
Подсказка 7
Равно косинусу угла ACB! Значит, чтобы найти этот угол, нам надо найти отношение СH к CH’, но квадрат этого отношения равен HM/MH’. А поскольку мы знаем, что М - точка пересечения медиан треугольника AHB и что H’C₀ = C₀H, то и отношение HM/MH’ нам известно! Значит, задача решена! (Осталось посчитать)
В такой конструкции сразу можно сказать, что антипараллельно
относительно
Поэтому если в условии дано,
что прямая
содержит медиану треугольника
то эта прямая является симедианой в
То есть мы
поняли, что луч
и луч
являются изогоналями относительно
если обозначить за
середину стороны
По свойствам ортоцентра точка — отражение
относительно
— лежит на описанной окружности
диаметрально
противоположно
При этом заметим, что
Лучи и
являются ортоизогоналями угла
(в треугольнике ортоцентр и центр описанной окружности изогонально
сопряжены). Отсюда следует, что лучи
и
являются изогоналями также и для
То есть
— симедиана ещё и в
Симедиана делит сторону в отношении квадратов прилежащих сторон, так что
Осталось заметить, что в данной конструкции и
являются диаметрами в подобных
и
соответственно, так
что их отношение равно коэффициенту подобия - косинусу угла
Итак,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!