Тема . Классические неравенства

Раскрытие и закрытие скобок

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела классические неравенства
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90237

Докажите неравенство 2(a2+ b2)≥ (a+ b)2  .

Показать доказательство

Для начала раскроем скобки:

  2   2   2       2
2a + 2b ≥a + 2ab +b

a2+ b2 ≥2ab (Нам надо это доказать)

Перенесём 2ab  влево и выделим полный квадрат:

a2− 2ab+b2 ≥ 0

(a− b)2 ≥ 0,

Что верно всегда, так как квадрат — неотрицательное число.

Так как верна четвёртая строчка, значит, верна третья. Тогда верна и вторая, а отсюда верна и первая строчка. Мы доказали исходное неравенство.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!