Отрезки касательных и секущих
Ошибка.
Попробуйте повторить позже
На стороне треугольника
отмечена точка
так, что
,
Около треугольника
описана
окружность. Через точку
и середину
стороны
проведена прямая, которая пересекает окружность в точке
причем
Найдите
если
Подсказка 1
Давайте отметим равные углы, которые следуют из равенства углов в условии. Что мы можем сказать про AC?
Подсказка 2
У нас теперь найдены подобные треугольники (в которых мы теперь можем найти некоторые отрезки), а AC — касательная к окружности (AKB)!
Подсказка 3
Давайте обозначим PD за x, DN за y. Какие уравнения можно записать на них исходя из того, что они — отрезки хорды?
Подсказка 4
Мы можем вычислить x*y! Осталось воспользоваться тем, что AC — касательная ;)
Заметим, что
Отрезок является отрезком касательной к окружности. Из подобия треугольников
и
— медиана
по теореме косинусов для треугольников
и
имеем
Так как , то при сложении двух уравнений получаем
Пусть
— точка пересечения прямой
с окружностью,
.
Четырехугольник вписан в окружность
. По свойствам касательных и секущих к окружности
имеем
Решаем систему уравнений
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!