Тема . Счётная планиметрия

Подобные треугольники и теорема Фалеса

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#32019

Пусть AL  — биссектриса треугольника ABC,  точка D  — ее середина, E  — проекция D  на AB.  Известно, что AC = 3AE.  Докажите, что треугольник CEL  равнобедренный.

Подсказки к задаче

Подсказка 1

У нас есть равенство 3AE = AC, но неудобно, что точка E не лежит на стороне AC. Что можно сделать, чтобы была еще одна точка с таким же свойством, но на стороне AC?

Подсказка 2

Стоит использовать свойство биссектрисы про равноудалённость точек на ней от сторон угла. Так что можно спроецировать точку D на AC! Пусть это точка F. Что теперь можно сказать про отрезки EL и LF? Что нам теперь нужно доказать?

Подсказка 3

По сути, нам надо доказать, что LF=LC, то есть доказать что треугольник LFC-равнобедренный. Для этого можно разбить весь AC на три кусочка. Какую еще точку можно получить для этого? Снова опустить перпендикуляр!

Показать доказательство

PIC

Точки на биссектрисе равноудалены от сторон угла, пусть DF ⊥AF,F ∈ AC,  тогда ED =DF  и равны △EDL  = △FDL,  откуда FL = EL,  а также AF =AE = AC∕3.  Пусть LH ∥DF, H ∈ AC,  тогда AF = FH = AC∕3,  поскольку AD = DL,  но тогда CH = AC − 2AC ∕3= AC∕3= FH.  В силу параллельности LH ⊥ FC,  отсюда LH  — медиана и высота △F LC,  так что LC = FL =LE.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!