Подобные треугольники и теорема Фалеса
Ошибка.
Попробуйте повторить позже
Диагонали вписанного четырехугольника пересекаются в точке Внутри треугольника выбрана такая точка что прямая является биссектрисой угла Луч вторично пересекает описанную окружность треугольника в точке а луч вторично пересекает описанную окружность треугольника в точке Найдите отношение площадей треугольников и
Источники:
Подсказка 1
Давайте попробуем найти какую-то связь между сторонами этих треугольников. Например: т.к. ABCD- вписан, то △BOC и △AOD подобны. Значит BO/AO=CO/DO. Что мы можем сказать про отношение CO/OD?
Подсказка 2
Мы видим, что в окружностях на CO и на OD смотрят одинаковые уголочки ∠CKO и ∠DKO => CO/OD=R₁/R₂, где R₁- радиус окружности, описанной около △COK, а R₂- радиус окружности, описанной около △DOK. Тогда BO/AO=R₁/R₂. А что мы можем сказать про отношение OL/OM?
Подсказка 3
Т.к. ∠LKO=180°-∠DKO=180°-∠CKO=∠MKO => LO/OM=R₁/R₂. Но тогда (BO*OM)/(AO*OL)=(R₁*R₂)/(R₂*R₁)=1. Мы знаем, что S(△BOM)=sin∠BOM*BO*OM/2 и S(△AOL)=sin∠AOL*AO*OL/2. Если мы докажем, что ∠BOM=∠AOL, то искомое отношение будет равно 1. Как это сделать?
Подсказка 4
Т.к. ∠OLK=∠OCK и ∠ODK=∠OMK, то треугольники △LOD и △MOC подобны по двум углам. А это значит, что ∠LOD=∠MOC. Осталось лишь докрутить это и понять, что ∠BOM=∠AOL и победа будет за нами!
Пусть и — радиусы окружностей, описанных около треугольников и соответственно. Заметим, что
откуда . Кроме того, из вписанности вытекает, что треугольники и подобны по двум углам. Тогда
так как хорды и соответствуют одинаковым вписанным углам. Поэтому
Поскольку и треугольники и подобны, откуда
Таким образом,
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!