Тема . Счётная планиметрия

Подобные треугольники и теорема Фалеса

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#75185

На боковой стороне CD  трапеции ABCD  нашлась точка M  такая, что BM = BC.  Пусть прямые BM  и AC  пересекаются в точке K,  а прямые DK  и BC  — в точке L.  Докажите, что углы BML  и DAM  равны.

Подсказки к задаче

Подсказка 1

Что хочется провести, что начать записывать цепочку равенств углов, начиная с DAM? На картинке много параллельностей, есть смысл обращаться к углам с помощью отрезков!

Показать доказательство

Пусть E  — точка пересечения прямых AM  и BC,  точка F  — точка пересечения прямых BM  и AD.  Из параллельности прямых   F A  и BE  следует равенство углов ∠F AE =∠BEA.

PIC

Достаточно показать, что ∠LMB  = ∠MEB,  что эквивалентно тому, что прямая BM  касается окружности (LME )  , то есть тому, что верно равенство произведений отрезков секущих BL ⋅BE =BM2,  а в силу BC = BM  , равенство

BL⋅BE = BC2

Осталось заметить, что, в силу подобия треугольников AKF  и CKB

FD   BL
FA-= BC-

а в силу подобия треугольников AMF  и EMB

FD-= BC-
FA   BE

Получаем

BC-  BL-
BE = BC

Домножив обе части равенства на произведение знаменателей, получим требуемое.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!