Подобные треугольники и теорема Фалеса
Ошибка.
Попробуйте повторить позже
В выпуклом четырёхугольнике углы и равны, а биссектриса угла проходит через середину стороны Чему может быть равно отношение
Подсказка 1
Давайте попробуем последовательно понимать, как пользоваться множеством фактов, которые нам дали в условии. Начнём с углов и биссектрисы. Нужно какое-то дополнительное построение, связанное с ней. Что в таком случае хорошо сработает для биссектрисы? Немного заглядывая вперёд, нам поможет это в дальнейшем с углами.
Подсказка 2
Верно, можно применить симметрию для точки D, пусть это точка K. Но не совсем понятно, куда она попадёт на AB. Это легко выясняется как раз из-за равенства углов и параллельности, откуда K лежит на отрезке AB. Дальше можно заметить ещё два следствия из симметрии и того, что мы поняли до этого.
Подсказка 3
Конечно, треугольник DKC прямоугольный и из-за этого AM параллельно KC. Теперь понятно, ради чего это всё затевалось. Что можно сказать про треугольники KBC и AKM?
Подсказка 4
Верно, они подобны с коэффициентом два по равенству из условия. Сейчас уже несложно перейти к сторонам AD и AB. Осталось только посчитать отношения, не забыв, что AD=AK, и победа!
Обозначим через середину стороны Отметим на луче точку симметричную точке относительно прямой
Поскольку
то и точка лежит на отрезке Поскольку
то и Следовательно, у треугольников и стороны соответственно параллельны, поэтому они подобны с коэффициентом откуда и искомое отношение равно
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!