Тема . Счётная планиметрия

Подобные треугольники и теорема Фалеса

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92365

В треугольнике ABC  угол A  является тупым. На стороне BC  отмечена точка D  таким образом, что AC = CD  . При этом окружность, описанная около треугольника ACD  , касается прямой AB  в точке A.  На прямой AD  отмечена точка E  таким образом, что CE = EA = AB.  Найдите отношение BC :AB.

Показать ответ и решение

PIC

По свойству угла между касательной и хордой ∠EAB = ∠ACD.  А учитывая, что треугольники EAB  и ACD  равнобедренные, можем сказать, что они подобны. Значит, ∠AEB = ∠CAD,  а т.к. треугольник ACE  равнобедренный, то ∠ACE  =∠CAD  = ∠AEB.  Следовательно, ∠AEC  =∠EAB,  из этого получаем, что CE ∥AB,  а раз CE = AB,  то ABEC  — параллелограмм.

Пусть AC = y,AB =2x,  тогда запишем подобие треугольников ACD  и EAB  с учётом, что D  — точка пересечения диагоналей в параллелограмме

AC-= AD-
AB   BE

y-= x
2x  y

В итоге получаем

BC   2y  √ -
AB-= 2x =  2
Ответ:

 √2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!