Теоремы Менелая и Чевы, Ван-Обеля и Жергонна
Ошибка.
Попробуйте повторить позже
Точка — середина стороны треугольника , а точка — середина медианы . Прямая, проходящая через точку параллельно пересекает сторону в точке . Найдите отношение
Подсказка 1
Пусть AQ пересекает BC в точке R. Так сразу найти какое-то отношение AQ к MP не выглядит простой задачей. Давайте сначала попробуем выразить AR и QR через MP.
Подсказка 2
В условии даны сразу несколько середин сторон, так еще и про параллельность что-то сказали. Возможно, стоит задуматься о каких-то средних линиях.
Подсказка 3
MP проходит через середину AC параллельно AQ, значит, MP – средняя линия треугольника ARC. QR проходит через середину BM параллельно MP, значит, QR – средняя линия треугольника MBP.
Пусть пересекается с в точке .
Первое решение.
Прямая, проходящая через середину отрезка параллельно , это средняя линия треугольника , она равна половине . То есть
Прямая, проходящая через точку отрезка параллельно , это средняя линия треугольника , она равна половине . То есть
В итоге
__________________________________________________________________________________________________
Второе решение.
Мы видим медиану и хочется немедленно её удвоить.
Тогда мы получаем параллелограмм и за счёт равенства накрест лежащих углов при параллельных прямых с коэффициентом подобия
Из подобия мы выяснили, что
Прямая, проходящая через точку параллельно , это средняя линия треугольника , она равна половине . В итоге
__________________________________________________________________________________________________
Третье решение.
По теореме Менелая для треугольника и прямой
По теореме Менелая для треугольника и прямой
Прямая, проходящая через точку параллельно , это средняя линия треугольника , она равна половине . В итоге
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!