Тема . Счётная планиметрия

Теоремы Менелая и Чевы, Ван-Обеля и Жергонна

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90909

Из вершины C  прямого угла прямоугольного треугольника ABC  опущена высота CK,  и в треугольнике ACK  проведена биссектриса CE.  Прямая, проходящая через точку B  параллельно CE,  пересекает прямую CK  в точке F.  Докажите, что прямая EF  делит отрезок AC  пополам.

Подсказки к задаче

Подсказка 1

Обозначим пересечение AC и EF за X. Откуда будем считать отношение AX/XC?

Подсказка 2

Логично вычислять его из теоремы Менелая для △ACK и прямой EF. Задача сводится к равенству двух отношений, как же его доказывать?

Подсказка 3

Ага, можно воспользоваться свойством биссектрисы в △ACK, параллельностью CE и BF, а также образовавшимися при проведении высоты подобными треугольниками.

Показать доказательство

Запишем теорему Менелая для треугольника ACK  и прямой EF,  пересечение AC  и EF  обозначим за X.  Тогда

AX-  CF- KE-
XC  ⋅FK ⋅EA = 1

Тогда необходимо доказать CF   EA EA   CA
FK-= KE,KE-= CK-  по свойству биссектрисы. CK  — высота в прямоугольном △ABC,  следовательно △KCA  подобен △KDC,  а значит, CA   BC
CK-= BK.  Отметим, что

          1            1
ECK = 90∘ −2 ∠ACK = 90∘ −2∠ABC

в таком случае по сумме углов треугольника BCE,CEB  и ECB  оказываются равны, значит, BE = BC.  Итого осталось показать, BBKE =FCKF,  а это следует из параллельности прямых CE  и BF.

PIC

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!