Тема . Классические неравенства

Правильная замена и преобразование выражений

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела классические неравенства
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#77986

Натуральные числа x,y  и z  таковы, что xy < z2  и 2x+ 3z < 5y.  Что больше: x5  или y3z2?

Показать ответ и решение

Докажем, что y >x.  Допустим противное, тогда x =y +t,t≥0.  Поэтому xy = (y+ t)y = y2+ty < z2,  откуда z >y.  Следовательно,

2x+ 3z =2y+ 2t+3z > 5y+ 2t>5y

что противоречит условию. Итак, y > x,  т. е. y = x+ t,t≥ 0.  Тогда xy = x2+tx< z2,  откуда z >x.  Итак, z > x  и y > x,  поэтому y3z2 > x5.

Ответ:

 y3z2 > x5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!