Увидеть граф (переформулировки)
Ошибка.
Попробуйте повторить позже
Дано натуральное На изначально пустую доску
одна за другой выставляются фишки. Фишку можно ставить только в
свободную клетку, которая граничит по стороне хотя бы с двумя свободными клетками. Какое наибольшее число фишек мы можем
выставить на доску по таким правилам?
Источники:
Оценка. Введем вспомогательный граф, вершинами которого будут клетки, а ребра проводятся между вершинами, у которых соответствующие им клетки граничат по стороне. Как только фишка ставится в очередную клетку, будем удалять все ребра, выходящие из соответствующей вершины. Заметим, что тем самым будут удаляться в точности ребра между вершиной, куда ставят фишку, и ее свободными соседями. Значит, после каждого выставления фишки должно удаляться не менее двух ребер.
Посчитаем общее количество ребер во введенном графе. Это количество перегородок между клетками; вертикальных перегородок
и столько же горизонтальных, поэтому ребер в графе
Так как при выставлении одной фишки мы должны удалить хотя бы два ребра, то количество выставленных на доску фишек не
превосходит то есть
Пример. Назовем диагональ доски, идущую из левого верхнего угла в правый нижний, главной. Будем выставлять фишки диагоналями, идя от диагонали, состоящей из одной клетки, к главной. На очередную диагональ фишки можно выставлять в любом порядке. Главную диагональ при этом не заполняем.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!