Тема . Комбинаторная геометрия

Расположение точек, отрезков и прямых

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела комбинаторная геометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80769

Дан клетчатый прямоугольник 100×400  . Сколькими способами можно закрасить 8 клеток этого прямоугольника так, чтобы закрашенное множество обладало хотя бы одной из следующих симметрий: относительно центра прямоугольника, относительно любой из двух "средних линий"прямоугольника ("средней линией"прямоутольника назовём отрезок, соединяющий середины двух его противоположных сторон). Ответ дайте в виде выражения, содержащего не более трёх членов (в них могут входить факториалы, биномиальные коэффициенты).

Источники: Физтех - 2024, 11.5 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Давайте начнём распутывать клубок симметрий с того, что обозначим за A₁ множество восьмёрок симметричных относительно одной горизонтальной средний линии, за A₂ - вертикальной, за B - относительно центра прямоугольника. Давайте подумаем, сколько нам нужно зафиксировать точек для каждой из симметрий и где, чтобы однозначно восстановить всю восьмёрку?

Подсказка 2

Верно, для A₁ нужны 4 точки не выше (не ниже), чем горизонтальная средняя линия, для A₂ - 4 точки не правее (не левее), чем вертикальная средняя линия, для B - 4 точки в любой одной из указанных ранее областей. Теперь стоит задуматься о том, пересекаются ли данные множества или какая-то комбинация симметрий даёт другую симметрию?

Подсказка 3

Верно, если восьмёрка лежит в любых двух множества A₁, A₂, B, то она лежит во всех трёх, отсюда, вспоминая формулу включений-исключений, мы понимаем, что ответ уже очень близко, осталось только его расписать.

Показать ответ и решение

Назовем восьмеркой набор из 8  клеток. Пусть A
 1  — множество восьмерок, симметричных относительной l
 1  , A
 2  — относительно l
 2  , B  — относительно центра прямоугольника. l1  и l2  это средние линии прямоугольника.

Если выбрать какие-то 4  точки в верхней половине прямоугольника, то остальные точки легко находятся в силу одной из рассматриваемой симметрий относительно l1, l2  и центра прямоугольника. Тогда количество элементов во множествах A1, A2, B  будет одинаковым. Тогда количество элементов в A1  будет равно количеству способов выбрать 4  очки в одной половине фигуры относительно l1.  Остальные 4  точки будут располагаются в другой половине. Тогда количество способов равняется   4
C100⋅200.

Если восьмерка лежит сразу в 2  из 3  множеств A1, A2, B,  то она лежит и в третьей. Это значит, что пересечение двух множеств или пусто, или пересекается с третьим.

Чтобы найти ответ надо найти количество элементов в объединении множеств. Используя формулу включений-исключений, получаем, что

S = |A1∪ A2∪ B|= |A1|+|A2|+|B|− 2|A1∩ A2∩B |,

где |M | — означает количество элементов во множестве M,  S  — искомое число

Если 2  точки, лежащие в одной из четвертей прямоугольника, принадлежат пересечению всех 3  множеств, то легко восстановить исходную восьмерку, удовлетворяющую сразу трем симметриям. Тогда можно посчитать количество элементов в пересечении множеств. Это будет количество способов выбрать 2  точки в одной из четвертей прямоугольника, образованной l1, l2  и центром прямоугольника. Следовательно, количество элементов равняется C2200⋅50.

Тогда посчитаем S

S = |A1 ∪A2 ∪B|= |A1|+ |A2|+ |B|− 2|A1 ∩A2∩ B|=

= 3C420000− 2C210000
Ответ:

 3C4  − 2C2
  20000    10000

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!