Расположение точек, отрезков и прямых
Ошибка.
Попробуйте повторить позже
Дан клетчатый прямоугольник . Сколькими способами можно закрасить 8 клеток этого прямоугольника так, чтобы закрашенное множество обладало хотя бы одной из следующих симметрий: относительно центра прямоугольника, относительно любой из двух "средних линий"прямоугольника ("средней линией"прямоутольника назовём отрезок, соединяющий середины двух его противоположных сторон). Ответ дайте в виде выражения, содержащего не более трёх членов (в них могут входить факториалы, биномиальные коэффициенты).
Подсказка 1
Давайте начнём распутывать клубок симметрий с того, что обозначим за A₁ множество восьмёрок симметричных относительно одной горизонтальной средний линии, за A₂ - вертикальной, за B - относительно центра прямоугольника. Давайте подумаем, сколько нам нужно зафиксировать точек для каждой из симметрий и где, чтобы однозначно восстановить всю восьмёрку?
Подсказка 2
Верно, для A₁ нужны 4 точки не выше (не ниже), чем горизонтальная средняя линия, для A₂ - 4 точки не правее (не левее), чем вертикальная средняя линия, для B - 4 точки в любой одной из указанных ранее областей. Теперь стоит задуматься о том, пересекаются ли данные множества или какая-то комбинация симметрий даёт другую симметрию?
Подсказка 3
Верно, если восьмёрка лежит в любых двух множества A₁, A₂, B, то она лежит во всех трёх, отсюда, вспоминая формулу включений-исключений, мы понимаем, что ответ уже очень близко, осталось только его расписать.
Назовем восьмеркой набор из клеток. Пусть — множество восьмерок, симметричных относительной , — относительно , — относительно центра прямоугольника. и это средние линии прямоугольника.
Если выбрать какие-то точки в верхней половине прямоугольника, то остальные точки легко находятся в силу одной из рассматриваемой симметрий относительно и центра прямоугольника. Тогда количество элементов во множествах будет одинаковым. Тогда количество элементов в будет равно количеству способов выбрать очки в одной половине фигуры относительно Остальные точки будут располагаются в другой половине. Тогда количество способов равняется
Если восьмерка лежит сразу в из множеств то она лежит и в третьей. Это значит, что пересечение двух множеств или пусто, или пересекается с третьим.
Чтобы найти ответ надо найти количество элементов в объединении множеств. Используя формулу включений-исключений, получаем, что
где — означает количество элементов во множестве — искомое число
Если точки, лежащие в одной из четвертей прямоугольника, принадлежат пересечению всех множеств, то легко восстановить исходную восьмерку, удовлетворяющую сразу трем симметриям. Тогда можно посчитать количество элементов в пересечении множеств. Это будет количество способов выбрать точки в одной из четвертей прямоугольника, образованной и центром прямоугольника. Следовательно, количество элементов равняется
Тогда посчитаем
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!