Расположение точек, отрезков и прямых
Ошибка.
Попробуйте повторить позже
Даны 12 точек: 7 из них лежат на одной окружности в плоскости , а остальные 5 расположены вне плоскости . Известно, что если четыре точки из всех 12 лежат в одной плоскости, то эта плоскость — . Сколько существует выпуклых пирамид с вершинами в данных точках? (Пирамиды считаются различными, если их множества вершин различны.)
Подсказка 1
Среди всех возможных пирамид для нас принципиально различаются два случая: когда вершин 4 (тетраэдр) и больше. Посчитаем их по отдельности и затем сложим.
Подсказка 2
Количество всех возможных тетраэдров - количество способов выбрать 4 вершины, за исключением случаев, когда все точки лежат в одной плоскости. Из условия нам известно, что это возможно только когда все 4 вершины принадлежат плоскости 𝜶.
Подсказка 3
У n-угольной пирамиды, где n≥4 основание лежит в плоскости 𝜶, а вершина вне неё. Отдельно посчитаем способы выбрать основание и умножим на количество вариантов выбора вершин.
Подсказка 4
Количество способов выбрать основание находится как сумма числа сочетаний из 7 от 4 до 7, а вершину пирамиды можно взять пятью разными способами. Тогда нужно просто перемножить их и сложить найденное количество тетраэдров и n-угольных пирамид с n≥4
Посчитаем отдельно количество тетраэдров и выпуклых угольных пирамид с
Количество тетраэдров это количество способов выбрать точки, не лежащих одновременно в одной плоскости. Тогда количество тетраэдров равняется
Найдем количество выпуклых угольных пирамид с Основание такой пирамиды лежит в плоскости а вершина — вне Тогда посчитаем количество оснований. Надо просуммировать все способы выбрать от 4 до 7 вершин без учёта порядка
Для каждого из посчитанных оснований вершину пирамиды можно выбрать пятью способами, поэтому всего пирамид
Итоговый ответ
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!