Расположение точек, отрезков и прямых
Ошибка.
Попробуйте повторить позже
На клетчатой плоскости расположено деревянных квадратов (квадраты не перекрываются), стороны которых идут по линиям сетки. Назовём квадрат движимым, если его можно подвинуть на клетку по вертикали или горизонтали. Какое наименьшее число движимых квадратов может быть?
Выберем квадрат, который нельзя подвинуть (если такого нет, то у нас движимых квадрата). Проведем прямые, содержащие его диагонали. Они разобьют плоскость на части: верхнюю, нижнюю, правую и левую. Заметим, что строго внутри каждой части лежит центр некоторого квадрата (иначе исходный квадрат можно подвинуть в соответствующем направлении). Рассмотрим отдельно верхнюю часть. Выберем квадрат, центр которого является одним из самых высоких, принадлежащих верхней части. Тогда этот квадрат можно подвинуть наверх (иначе в верхней части был бы более высокий центр некоторого квадрата). Аналогично выбираем движимые квадраты в других частях. Таким, образом. движимых квадратов хотя бы
Докажем, что может быть ровно движимых квадрата. Рассмотрим два квадрата со стороной , занимающих одинаковые строки, между которыми находится ровно пустой столбец, заполним этот столбец квадратами со стороной Легко проверить, что в таком примере ровно движимых квадрата.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!