Тема . Комбинаторная геометрия

Расположение точек, отрезков и прямых

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела комбинаторная геометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89259

Двое игроков отмечают точки плоскости. Сначала первый отмечает точку красным цветом, затем второй отмечает 100  точек синим, затем первый снова одну точку красным, второй 100  точек синим и так далее. (Перекрашивать уже отмеченные точки нельзя.) Докажите, что первый может построить правильный треугольник с красными вершинами.

Подсказки к задаче

Подсказка 1

Давайте будем следить за количеством S(n) точек неотмеченных точек плоскости на доске после n ходов, закрасив красным которые, на плоскости образуется правильный треугольник с вершинами в красных точках. Какое условие на функцию S(n) могло бы быть достаточным, чтобы доказать, что первый игрок имеет победную стратегию?

Подсказка 2

Пусть T(n) — количество синих точек на плоскости после хода n. Тогда достаточно показать, что T(n) < S(n) при некотором n. Как это можно сделать?

Подсказка 3

Можно явно найти вид функций T(n) и S(n). Например, T(n)=100n, потому каждый ход второго игрока добавляет 100 точек на плоскости. Предъявите стратегию за первого игрока и найдите S(n) для данной стратегии.

Подсказка 4

Покажем стратегию игры за первого. Выберем прямую и каждым шагом будем красить одну из точек прямой в красный, если не существует не отмеченной цветом точки X плоскости, которая образует правильный треугольник с красными вершинами, иначе покрасим X в красный. Как найти S(n) для данной стратегии?

Подсказка 5

Покажем стратегию игры за первого. Выберем прямую и каждым шагом будем красить одну из точек прямой в красный, если не существует не отмеченной цветом точки X плоскости, которая образует правильный треугольник с красными вершинами, иначе покрасим X в красный. Как найти S(n) для данной стратегии?

Подсказка 6

Для каждых двух красных точек на прямой найдется ровно 2 уникальные точки плоскости, закрасив которые мы получим равносторонний треугольник. Тогда S(n) равно удвоенному количеству пар n точек, то есть n(n+1). Осталось показать, что T(n)=100n<S(n)=n(n+1) при достаточно больших значениях n.

Показать доказательство

Покажем стратегию игры за первого. Выберем прямую и каждым шагом будем красить одну из точек прямой в красный, если не существует не отмеченной цветом точки X  плоскости, которая образует правильный треугольник с красными вершинами, иначе покрасим X  в красный.

Пусть S (n)  — количество точек, закрашенных синим после n  ходов второго игрока, тогда S(n)= 100n.  Пусть T(n)  — количество не закрашенных точек плоскости, которые образуют правильный треугольник с двумя красными точками плоскости после n  ходов первого игрока. Поскольку все красные точки лежат на одной прямой, не существует точки плоскости, которая образовывала бы правильный треугольник сразу с двумя различными парами красных точек на плоскости, следовательно, каждой паре красных точек соответствует ровно две точки, которые образуют с этой парой правильный треугольник. Таким образом, T(n)= n(n − 1),  ведь равно удвоенному количеству пар, которые образуют n  отмеченных красных точек. Таким образом, при достаточно больших n  верно, что

S(n)< T(n)

то есть существует ход, после которого количество точек, гарантирующих победу первому игроку будет больше, чем количество всех синих точек на плоскости.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!