Тема . Комбинаторная геометрия

Принцип крайнего, индукция и другие методы в комбигео

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела комбинаторная геометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#74421

Докажите, что любой треугольник можно разрезать на 77  прямоугольных треугольников.

Показать доказательство

Докажем индукцией по n,  что при n≥ 2  любой треугольник можно разрезать на n  прямоугольных треугольников. База для n =2  очевидно, просто проведём высоту (если треугольник прямоугольный, проведём из прямого угла).

Переход. Воспользуемся предположением и разделим треугольник на n  прямоугольных треугольников. Среди полученных треугольников выберем любой и разделим его на два прямоугольных. Получили разделение на n+ 1  прямоугольный треугольник.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!