Тема . Комбинаторная геометрия

Принцип крайнего, индукция и другие методы в комбигео

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела комбинаторная геометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90012

В правильном n  -угольнике ( n≥ 3  ) Коля, аналитик платформы «AllCups», решил сопоставить отрезкам между вершинами (т.е. сторонам и диагоналям) их важности, т.е. натуральные числа, удовлетворяющие условиям:

1. для любого треугольника с вершинами в вершинах данного n  -угольника важности двух его сторон равны и превосходят важность третьей стороны;

2. важности всех отрезков должны образовывать отрезок натурального ряда, т.е. быть числами 1,2,3,...,k  без пропусков, но с повторениями.

Найдите максимальное возможное k  .

Источники: Иннополис - 2024 (см. dovuz.innopolis.university)

Подсказки к задаче

Подсказка 1

Задача вида «оценка + пример», поэтому хочется понять ответ. Например, для n = 3 и n =4 какие ответы?

Подсказка 2

Для n = 3 ответ совсем просто проверяется, для n = 4 чуть сложнее. Но из них можно предположить, что для произвольного n значение k не превосходит n-1. Причем для k = n-1 нетрудно строиться пример(один из вариантов — пронумеровать вершины от 1 до n, а стороны между i и (i < j) сделать равными какому-то выражению от j). Значит, можно попробовать доказать эту оценку, но как?

Подсказка 3

С помощью индукции! База уже есть. Пусть для всех n от 1 до p предположение верно, докажем для n = p + 1.

Подсказка 4

Например, что не бывает треугольника с двумя отрезками важности 1. Рассмотрите произвольный отрезок АВ с важность 1 и две произвольные точки С и D, отличные от А и В. Что можно сказать о важности АС и ВС, а о паре АD и BD?

Подсказка 5

Они совпадают. Что если попробовать «склеить» А и В? Тогда как раз получится р точек и можно будет использовать предположение индукции. Нужно лишь проверить, что «склеивание» будет происходить корректно.

Показать ответ и решение

Перед нами задача вида “оценка +  пример”. Сперва докажем оценку. По индукции по n  будем доказывать, что наибольшее возможное значение k  не превосходит n− 1

База индукции: n= 3.  Если k≥ 3,  то стороны единственного треугольника обязаны быть 1,2,3,  но это противоречит условию, о том, что в треугольнике есть две равные стороны.

Индукционное предположение: Пусть утверждение индукции выполняется для всех n  от 3  до p∈ ℕ.  Рассмотрим произвольное распределение важностей для n− угольника, где n= p+ 1.  Согласно условию, должен быть отрезок важности 1− рассмотрим произвольный треугольник на вершинах n− угольника, для которого этот отрезок является стороной (далее будем называть такие треугольники подходящими). В треугольнике не может быть более одной стороны важности 1,  ведь иначе оставшаяся сторона должна быть меньше 1.

Обозначим вершины отрезка важности 1  как A  и B,  за C  и D  обозначим произвольные вершины n− угольника (такие найдутся, так как p +1≥ 4  ). Покажем, что важности сторон треугольника ACD  не поменяются при замене A  на B.  Действительно, при такой замене отрезок AC  будет заменён на BC,  а отрезок AD  на BD.  Но поскольку оба треугольника ABC  и ABD  содержат отрезок   AB  важности 1,  то, согласно доказанному выше, важности пар сторон каждого треугольника равны. Значит, важности AC  и BC,  как и важности AD  и BD  совпадают.

Проделаем следующую процедуру: для отрезка AB  с важностью 1,  эти две вершины склеим в одну вершину X,  и для каждой вершины C  важностью XC  будем считать равной важности AC.  Докажем, что многоугольник удовлетворяет первому условию и “ослабленному” второму, т.e. важности всех его сторон и диагоналей образуют отрезок 1,2,3,...,k  или 2,3,...,k  натурального ряда без пропусков. Действительно, для любого подходящего треугольника XY Z  нового многоугольника, если ни одна из вершин X,Y,Z  не была склеена с другой, то требование на важности сторон не изменилось. Если же какая-то вершина (без ограничения общности, вершина X  ) была склеена из вершин A  и B,  то, как было показано ранее, распределение важностей в треугольнике XY Z  будет таким же, как в треугольниках AYZ  и BYZ,  в каждом из которых первое условие было выполнено, а значит, оно не нарушилось и после склейки. Второе, "ослабленное"условие также будет выполнено, т.к. после склейки из набора важностей будет удалено 1.

Проделав такую склейку по очереди с каждым отрезком важности 1  получим m − угольник (m < n)  , для которого выполнено первое и второе "ослабленное условия задачи". Для него понизим все важности на 1,  и получим выполняющиеся условия для m − угольника, значит, k− 1≤ m − 1,  откуда k≤ m ≤n − 1.  Индукция доказана.

Пример: Занумеруем все вершины n− угольника числами от 1  до n,  и зададим отрезкам, соединяющим вершины с номерами i  и    j  (i< j),  важность j− 1.  Легко проверить, что оба условия на важности выполняются, и максимальная важность равна n − 1.

Ответ:

 n − 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!