Тема . Комбинаторная геометрия

Принцип крайнего, индукция и другие методы в комбигео

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела комбинаторная геометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#94940

Вершины выпуклого многоугольника раскрашены в три цвета так, что каждый цвет присутствует и никакие две соседние вершины не окрашены в один цвет. Докажите, что многоугольник можно разбить диагоналями на треугольники так, чтобы у каждого треугольника вершины были трёх разных цветов.

Показать доказательство

Будем доказывать это утверждение индукцией по числу вершин многоугольника.

База для n= 3  очевидна.

Переход. Пусть для n  и меньших значений всё доказано, докажем для n+ 1.  Найдём три соседние вершины разного цвета. Пусть не нашлось, тогда использовались бы только два цвета, а это противоречило бы условию наличия всех трёх цветов. Пусть вершины идут по порядку A,B,C  и окрашены в цвета 1, 2 и 3 соответственно.

Случай 1. Если между вершинами A  и C  (  в части многоугольника, где нет B )  есть хотя бы одна вершина цвета 2, то отсекаем от многоугольника треугольник ABC  по линии AC,  получая n− угольник, для которого выполняются все условия индукции. По предположению, его можно разбить на треугольники с необходимым условием. Тогда получается, что мы получили разбиение (n+ 1)− угольника.

Случай 2. Если же такой вершины не нашлось, то все вершины поочерёдно окрашены в цвета 1 и 3. Тогда можно провести отрезки от вершины B  ко всем остальным вершинам. Тем самым мы получаем искомое разбиение.

Переход доказан.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!