Тема . Остатки и сравнения по модулю

Китайская теорема об остатках

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела остатки и сравнения по модулю
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#51001

Петя, Вася и Иван каждый на своей карточке написал наугад по одной цифре и передали карточки Маше так, чтобы она не видела написанных цифр. Маша случайным образом перемешала карточки и выложила их в ряд на стол. Найти вероятность того, что на столе можно увидеть трехзначное число, кратное 5  и имеющее при делении на 7  остаток 3.

Показать ответ и решение

Можно считать, что мы получаем на столе равновероятно любое число от 0  (на трёх карточках могут быть нули) до 999  . Тогда для вычисления вероятности нужно число благоприятных исходов поделить на число возможных исходов — на 1000.

Первое решение.

Используя Китайскую теорему об остатках, получаем, что среди любых 35  подряд идущих чисел нам подходит ровно одно с остатком 10  по модулю 35  . Первое такое трёхзначное число — 115  , затем идут 150,185,...115+ 35 ⋅25= 990  : всего чисел 26  . Осталось поделить на 1000  и получить ответ.

Второе решение.

По условию искомое трёхзначное число x  кратно 5  и при делении на 7  даёт остаток 3  , то есть

x= 7n+ 3= 5n+ 5+(2n− 2),n∈ ℤ

С учётом этих условий получаем

2n− 2= 5k,k∈ ℤ  =⇒   k= 2t,t∈ℤ  =⇒   n= 5t+ 1 =⇒   x= 7(5t+ 1)+3 =35t+ 10

Осталось учесть условие на трёхзначность:

                         90            989-
100 ≤35t+ 10 <999  ⇐⇒   2< 35 < 3≤ t≤ 28 < 35 <29

Подходят 28− 3+ 1= 26  значений t  .

Ответ:

 0,026

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!