Китайская теорема об остатках
Ошибка.
Попробуйте повторить позже
Подсказка 1, пункт а
Если число не является простым, то у него есть хотя бы два простых делителя. Число x можно выбрать так, чтобы оно делилось на 2 × 3 = 6. А какими свойствами удобно было бы наделить число x + 1?
Подсказка 2, пункт а)
Верно! Удобно сделать так, чтобы x + 1 делилось на 5 × 7. Подходящее x существует по китайской теореме об остатках. А можно ли аналогичным образом построить x + 2, ..., x + 999?
Подсказка 1, пункт б)
Если число делится на простое p, но не делится на p², то оно нам подходит. Можно ли, пользуясь этим замечанием, построить подходящую последовательность?
Чтобы число не было степенью никакого простого числа, то у него должно быть хотя бы 2 простых делителя. Давайте с помощью КТО
найдем такое , что
(mod )
(mod )
...
(mod )
Тогда такой ряд , ...., подойдет.
Во втором пункте, заметим, что если у числа есть простой делитель ровно в первой степени, то оно точно не степень, то есть если число
(mod ), где — простое, то делится на и не делится на и тогда - хорошее
Опять же по КТО найдем такое , что:
(mod )
(mod )
...
(mod )
Тогда ряд , ...., подойдет.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!