Тема 5. Задачи на теорию вероятностей

5.02 Умножение вероятностей вдоль цепочки событий

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи на теорию вероятностей
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#137600

Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,7. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.

Источники: Банк ФИПИ

Показать ответ и решение

Вероятность попадания равна 0,7,  тогда вероятность промаха равна 1 − 0,7= 0,3.  Так как нас интересует исход, когда стрелок первый раз попал, а остальные 3 раза промахнулся, то искомая вероятность будет равна

0,7⋅0,3⋅0,3⋅0,3= 0,0189
Ответ: 0,0189

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!