Тема . Треугольники и их элементы

Симедианы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники и их элементы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#36391

Из точки P  к окружности ω  проведены отрезки касательных P A,PB,  точка C  диаметрально противоположна точке B.  Докажите, что прямая CP  делит пополам перпендикуляр, опущенный из точки A  на прямую BC.

Подсказки к задаче

Подсказка 1

Какую конструкцию мы знаем про точку пересечения касательных? Чем является прямая CP?

Подсказка 2

Прямая CP содержит симедиану треугольника ABC! А в задаче просят доказать, что эта симедиана бьёт какой-то отрезок внутри ABC пополам, то есть является медианой. Когда симедиана к одному отрезку является медианой к другому отрезку?

Подсказка 3

Если эти отрезки антипараллельны! Правда тут как бы предельный случай получается, потому что одна из точек (А) совпадает для обоих отрезков. Ну ничего - главное доказать равенство углов как при антипараллельности

Показать доказательство

Первое решение. Пусть H  — основание перпендикуляра из точки A  на прямую BC.  По свойству прямоугольного треугольника ∠B = ∠CAH,  то есть прямые BA  и AH  антипараллельны в угле C.  Осталось заметить, что CP  является симедианой треугольника CAB,  а значит, медианой для любого треугольника, третья сторона которого антипараллельна AB  в указанном угле.

Второе решение. Обозначим через K  вторую точку пересечения прямой PC  и ω,  а через M  — середину BC.  Касательные к   ω  в точках A  и B  пересекаются на прямой KC,  откуда следует, что четырёхугольник BKAC  гармонический.

PIC

Делая проекцию четвёрки точек (B,A,K,C)  из точки C  на прямую AT  получаем, что

(B,A,K,C) =(CB,CA,CK, CC)= (H,A,M,∞ )=− 1

Предпоследнее равенство следует из того, что касательная в точке C  к ω  параллельна прямой AH,  так как она перпендикулярна диаметру BC,  как и прямая AH.  Значит, M  является серединой AH.

______________________________________________________________________________________________________________________________________________________

Замечание. Из доказанного факта следует, что точка Лемуана прямоугольного треугольника совпадает с серединой его высоты, проведенной из прямого угла.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!