Комбинаторика на ОММО: графы, турниры, логика, Дирихле
Ошибка.
Попробуйте повторить позже
В первенстве по футболу участвует 20 команд, которые играют по разу друг с другом. Какое наименьшее число игр должно быть сыграно, чтобы среди любых трех команд нашлись две, уже сыгравшие между собой?
Источники:
Будем рассматривать несыгранные игры. Условие означает, что несыгранные игры не образуют треугольников. Докажем индукцией по ,
что для
команд наибольшее число несыгранных игр не больше
.
База индукции: Оценка очевидна.
Шаг индукции: Пусть доказано для , докажем для
.
Если несыгранных игр нет, то всё доказано. Иначе выделим произвольные команды и
, не игравшие между собой. Заметим, что
несыгранных игр с участием команд
или
не более
(не считая игры между
и
), так как для любой команды
сыграна
хотя бы одна из игр
и
. Теперь рассмотрим все команды, кроме
и
и применим предположение индукции - среди них не
сыграно не более
игр. Отсюда общее количество несыгранных игр не более
, что и требовалось
доказать.
Подставляя получаем, что число несыгранных игр не более 100, а число всех возможных игр
, откуда число
сыгранных игр не менее
.
Оценка достигается, если разбить команды на две равные группы, в каждой из которых провести все матчи, а между группами не проводить ни одного.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!