Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Планиметрия на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#34678

Точка O  является центром окружности, описанной около треугольника ABC  со сторонами BC = 8  и AC = 4  . Найдите длину стороны AB  , если длина вектора  −→  −−→   −−→
4OA −OB − 3OC  равна 10  .

Показать ответ и решение

PIC

Будем пользоваться тем, что скалярный квадрат вектора равен квадрату длины вектора.

Из условия получаем, что

|3−−→CO+ 3−O→A +−B−→O + −O→A|= 10

  −→   −→
|3CA+ BA|= 10

  −→   −→
|3AC+ AB|= 10

А теперь возведём обе части в квадрат:

9AC2+ AB2 +6AC ⋅AB⋅cos∠BAC = 100

По теореме косинусов из треугольника ABC  имеем

  2    2                      2
AC + AB  − 2AC ⋅AB ⋅cos∠BAC = BC

Вычитая это равенства из полученного выше, получаем

8AC2+ 8AB ⋅AC ⋅cos∠BAC  =100− BC2

С учётом AC = 4,BC = 8  имеем

8⋅16+ 8⋅AB ⋅4⋅cos∠BAC = 36

8AB ⋅cos∠BAC  =9− 32

Подставим в   2    2                      2
AC + AB − 2AC ⋅AB ⋅cos∠BAC = BC :

      2
16+ AB  +23= 64

AB =5
Ответ:

 5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!