Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Планиметрия на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79601

Векторы ⃗a ,⃗a,⃗a ,⃗a
 1 2  3 4  , расположенные в одной плоскости с вектором ⃗b  , имеют равную длину, отличную от длины вектора ⃗b  . Известно, что

                          −→ ||    ||
9⃗a1− 4⃗a2− 5⃗b= 16⃗a3− 9⃗a4− 7⃗b= 0 ,|⃗a1− ⃗b|= 8

Найдите ||   ⃗||
|⃗a3− b|.

Источники: ОММО - 2024, задача 4 (см. olympiads.mccme.ru)

Показать ответ и решение

Выразим ⃗a  = 4a⃗+ 5⃗b
 1   92  9  и ⃗a = 9-⃗a +-7⃗b
 3  164  16  . Поэтому ⃗a
 1  — чевиана в треугольнике AOE  со сторонами OA = ⃗a
      2  и OE =⃗b  , которая делит третью сторону AE  в отношении 5  к 4  . А a⃗3  — чевиана треугольника OED  со сторонами     ⃗
OE =b  и OD = ⃗a4  , делящая  ED  в отношении 9  к 7  . Так как векторы ⃗a1,⃗a2,⃗a3,⃗a4  равны, то они лежат на окружности с центром в точке O  , а треугольники AOB  и OCD  — равнобедренные.

PIC

По теореме об отрезках секущих

4x ⋅9x= 9y⋅16y

Откуда

y = x
    2

По условию 4x= 8  , следовательно |a⃗3− ⃗b|= 9y = 9.

Ответ: 9

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!