Тригонометрия на ОММО
Ошибка.
Попробуйте повторить позже
Решите уравнение
Подсказка 1
В уравнении содержатся функции sin(x) и cos(x). Хотелось бы сделать какую-нибудь замену и выразить эти функции через замену. Какая замена может подойти?
Подсказка 2
Верно! Универсальная тригонометрическая замена t = tg(x/2) вполне подойдет. Тогда sinx = 2t/(1+t²) и cosx = (1-t²)/(1+t²). Но эта замена не совсем "бесплатная". Что еще нужно проверить?
Подсказка 3
Верно! Нужно проверить, что tg(x/2) определен! Могут ли быть решениями такие x, что для x/2 не определен тангенс?
Подсказка 4
Подставляя x = π + 2πn при целых n в уравнение, получаем, что ни один такой x решением не является, а значит, можно сделать нашу замену! Однако при простом раскрытии скобок в уравнении возникнет четвертая степень t! Можно ли этого избежать?
Подсказка 5
Конечно! Приведя к общему знаменателю и раскрыв скобки, не будем сразу умножать на знаменатель, а заметим, что в числителе выделяется полный квадрат! Как тогда упростить уравнение?
Первое решение.
Если то
поэтому можно сделать универсальную тригонометрическую подстановку и
получить при
уравнение
________________________________________________________________________________________________________________________________________________________________________________________________________________
Второе решение.
Раскроем скобки
Так как
то
Сделаем замену
Откуда
Так как то при
равенство не выполняется, следовательно,
Представим левую часть в виде синуса суммы:
Откуда
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!