Тригонометрия на ОММО
Ошибка.
Попробуйте повторить позже
Изобразите (с обоснованием) на координатной плоскости множество решений неравенства
Источники:
Подсказка 1
Мы работаем с арксинусами, в аргументах которых синусы -> прибавление к аргументу синуса 2π (или вычитание) ничего не изменит. Значит, нам достаточно работать только с отрезком длины 2π, возьмем, например, от -π/2 до 3π/2. Посмотрим на то, как именно раскрывается arcsin(sin(x)) на отрезках от -π/2 до π/2 и от π/2 до 3π/2.
Подсказка 2
На первом отрезке арксинус превратится в х², а на втором - в (π-х)². Тогда мы можем, грамотно применив разность квадратов, нарисовать области, которые нам подходят. Достаточно будет выбрать одну, и если она не будет подходить, то все соседние к ней подойдут, ведь при переходе через "ноль" будет меняться знак исходного выражения.
Подсказка 3
Важно отметить, что скобки отличаются собой только аргументами синуса, а это значит, что графики этих выражений будут идентичны и смещены друг от друга на расстояние π/3. Поэтому получится очень много квадратиков (так как изначально график любой изначальной скобки и составлял цепочку квадратов), и именно отсюда, после получения цепочек квадратиков нужно будет найти один подходящий, а затем дважды переходить через "ноль" и закрашивать нужную область.
Выражение слева не меняется при изменении на период . Поэтому достаточно разобраться с графиком на отрезке длины , например,
Если то
Если то
Рассмотрим в выражении из условия первую скобку, для второй и третьей построение будет аналогично, но со сдвигом на
Если то получаем неравенство
Если то получаем неравенство
Теперь рассмотрим график ниже, отметим области под одной прямой и над другой:
в квадратах.
Для второй и третьей скобки будут те же квадраты, только сдвинутые на и на по оси
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!