Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Тригонометрия на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#49147

Для x= π-
   2n  найдите значение суммы

  2      2       2           2
cos (x)+ cos (2x)+ cos (3x)+ ...+ cos (nx).

Источники: ОММО-2015, номер 6, (см. olympiads.mccme.ru)

Показать ответ и решение

Первое решение.

Воспользуемся тождеством   2   1+cos2t
cos t=   2  .

Тогда по условию нам надо посчитать

n+ cos2x+ cos4x+ ...+ cos2(n− 1)x+ cos2nx   n− 1  S
-----------------2------------------= -2--+ 2,

где S = cos0x+ cos2x+ cos4x+ ...+ cos2(n− 1)x+ cos2nx.

По условию 2nx= π,  так что для любого t  выполнено cos(2nx− t)= cos(π− t)= − cost.  Появляется идея: разбить слагаемые-косинусы на пары по аргументам t< − >2nx− t,  потому что сумма косинусов у каждой такой пары равна нулю.

В сумме S  количество слагаемых n+ 1  . Если n  нечётно, то все слагаемые разбиваются на пары с нулевой суммой за счёт сказанного выше. Если n  чётно, то паре не найдётся слагаемому cos(nx)  , но оно равно нулю.

В итоге S = 0  для любого n,  так что ответ n−21.

Второе решение.

Заметим, что

   (   )     (       )      (  )     (      )      (   )     (  )
cos2  kπ + cos2  (n-− k)π =cos2  kπ  +cos2  π− kπ  = cos2 kπ  + sin2 kπ  = 1.
     2n          2n          2n        2  2n        2n        2n

Если n  нечетно, разобьем все слагаемые, кроме cos2(nx)  , на пары, что сумма чисел в паре равна 1 . Отсюда разбитые на пары слагаемые дают сумму n−1
 2  , а cos2(nx)= cos2(π)= 0
            2  . Если же n  четно, то без пары остаются и cos2(nx)= cos2(π) =0
            2  , и cos2(π)= 1
    4   2  . И в том, и в другом случае полная сумма равна n−-1.
 2

Ответ:

 n−1
 2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!