Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Тригонометрия на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71526

Решите уравнение

     x√11-      x√11-      5x√11
arcsin 2√21-+ arcsin4√21 = arcsin-8√21-

Источники: ОММО-2022, номер 6 (см. olympiads.mccme.ru)

Показать ответ и решение

Из условия на область определения арксинуса вытекает, что

     8√21-      1344
|x|≤ 5√11-⇔ x2 ≤ 275
(1)

Вычисляя синус от обеих частей уравнения и учитывая, что

cosarcsint> 0

и, следовательно,

                        ∘ -----
sin(arcsint)=t, и cos(arcsint) = 1− t2,

получаем

 √-- ∘ --------  √ -- ∘-------    √ --
x√11⋅  1− 11x2-+ x√-11⋅ 1 − 11x2 = 5x√-11
2 21      16 ⋅21  4  21      4 ⋅21   8 21

Перенося все в левую часть уравнения, упрощая и вынося общим множитель за скобки, имеем

 √--
x-11 (∘336-−-11x2+ ∘84−-11x2− 5√21) =0
8⋅21

Из данного уравнения следует, что или x =0  (который, очевидно, подходит), или x  является корнем уравнения

∘336−-11x2+ ∘84-− 11x2 = 5√21

Из условия (1)  следует, что все подкоренные выражения положительны. Поскольку обе части уравнения положительны, то их можно возвести в квадрат

          ∘ ------------------
336− 11x2+ 2 (336− 11x2)(84− 11x2)+ 84− 11x2 = 525

Перенося всё кроме корня в правую часть уравнения, имеем

2∘ (336−-11x2)(84−-11x2)= 22x2+ 105

Возводя ещё раз обе части уравнения в квадрат, получаем

 (       2)(      2)     4      2
4 336− 11x   84 − 11x = 484x + 4620x + 11025

или

23100x2 = 101871

Таким образом, уравнение имеет ещё два возможных корня

x =± 21
     10

Проверка. Проверяем, что левая часть уравнения при данных значениях аргумента лежит в промежутке [−π∕2;π∕2].  Для этого вычисляем косинус левой части

  (     x√11       x√11)  ∘ (---11x2)(----11x2)-  11x2
cos arcsin2√21 +arcsin 4√21  =   1− 4⋅21   1− 16-⋅21- − 8⋅21 =

  ∘ ----------------------
    (   11⋅21)(   -11-⋅21-)  11⋅21  13⋅37  11⋅21
=    1− 4⋅100  1− 16⋅100 − 8⋅100 = 800 −  800 > 0

Поскольку значения косинуса положительно, а левая часть лежит в промежутке [−π;π],  то она лежит в промежутке [− π∕2;π∕2].  Значит, все найденные числа являются решением задания.

Ответ:

 0;±21
   10

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!