Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Параметры на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79605

Наименьшее значение функции

∘ -2---2 ∘ -2--2- ∘ -2--2-     ∘ -2-------2
  x1+ 1 +  x2+ 2 +  x3+ 3 +...+   x2024+2024

для неотрицательных x1,x2,...,x2024  , сумма которых равна k  , равно 2024⋅2025  . При каком значении параметра k  такое возможно?

Источники: ОММО - 2024, задача 7 (см. olympiads.mccme.ru)

Показать ответ и решение

На оси абсцисс отметим отрезки, равные по длине x,x ,...,x
1  2    2024  , а на оси ординат — отрезки длины 1,2,...,2024  . Тогда выражение ∘ -2---
  x1+1  — это расстояние от точки (0,0)  до точки (x1,1)  , а ∘ 2---2-
  x2 +2  — расстояние от точки (x1,1)  до точки (x2+ x1,3)  .

PIC

Таким образом, получили ломанную из точки (0,0)  до точки с координатами

(x1+ ...+ x2024,2024⋅22025) =(k,2024⋅22025)  . Ее длина не превосходит расстояния между этими точками, то есть

                                            (        )
∘x2-+12+ ∘x2-+22+ ∘x2+-32+ ...+ ∘x2--+-20242 ≥ 2024⋅2025  2+k2
   1       2        3            2024             2

Тогда

          ∘ (--------)2----
2024⋅2025=    2024⋅2025  + k2
                 2

Решив это уравнение, находим

    √3
k = 2-⋅2024 ⋅2025
Ответ:

 2025⋅1012√3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!