Тема . Треугольники и их элементы

Прямая Эйлера

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники и их элементы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67117

Вписанная окружность касается сторон треугольника ABC  в точках A ,B
 1  1  и C .
 1  Докажите, что прямая Эйлера треугольника A B C
 1 1 1  проходит через центр описанной окружности треугольника ABC.

Показать доказательство

PIC

Пусть O  и I  — центры описанной и вписанной окружностей треугольника ABC, H  — ортоцентр треугольника A1B1C1.  Проведем в треугольнике A1B1C1  высоты A1A2,B1B2  и C1C2.  По свойству ортоцентра H  — инцентр треугольника A2B2C2.

Стороны исходного треугольника ABC  являются касательными к окружности (A1B1C1)  в соответствующих точках. Каждый отрезок, соединяющий основания высот A1B1C1,  параллелен соответствующей касательной, проведённой к описанной окружности в соответствующей вершине треугольника (эту несложную лемму можно использовать в данной задаче без доказательства). В итоге стороны треугольников ABC  и A2B2C2  параллельны.

Значит, существует гомотетия, переводящая треугольник ABC  в A2B2C2.  При этой гомотетии точка O  переходит в точку центр описанной окружности ΔA2B2C2,  а точка I  — в точку H.

Пусть центр гомотетии — некоторая точка X,  тогда тройки точек X,O,  центр описанной окружности ΔA2B2C2  и X,I,H  коллинеарны.

А ведь центр описанной окружности ΔA2B2C2  — центр окружности Эйлера для ΔA1B1C1.  Значит, он лежит на его прямой Эйлера HI.  Но тогда и O  лежит на этой прямой.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!