Тема . Текстовые задачи на конструктивы в комбе

Процессы и алгоритмы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела текстовые задачи на конструктивы в комбе
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#119512

На марафонах Школково учатся 3200  детей в 17  различных марафонах. Каждый день один школьник переходит из марафона в марафон, где было не меньше детей до его перехода. Докажите, что рано или поздно все дети соберутся в одной группе.

Показать доказательство

Рассмотрим граф, в котором вершинам соответствуют люди, а ребра между вершинами проведены, если соответствующие дети — участники одного марафона. С переходом человека между марафонами все ребра внутри прошлого марафона удаляются, и появляются ребра внутри нового марафона.

Если степень переходящей вершины до перехода была k,  то в ее марафоне k+ 1  человек, тогда в марафоне, куда она переходит должно быть не менее k +1  человека, откуда получаем, что новая степень вершины не меньше k+ 1.  Следовательно, после каждого перехода число ребер в графе увеличивается. Бесконечно увеличиваться число ребер увеличиваться не может, значит, рано или поздно процесс остановится. Очевидно, что он остановится именно тогда, когда все дети перейдут в один марафон, поскольку в любой другой ситуации возможен переход.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!