Тема . Текстовые задачи на конструктивы в комбе

Взвешивания и количество информации

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела текстовые задачи на конструктивы в комбе
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#93235

В одиннадцатом классе учится 30  школьников. В их учебный план включены 15  дисциплин. Для каждой дисциплины можно выбрать 5  сильнейших школьников — тех, которые наиболее хорошо разбираются в ней. Всегда ли можно рассадить всех школьников по двум аудиториям так, чтобы в каждой аудитории сидел хотя бы один школьник из каждой пятёрки сильнейших?

Подсказки к задаче

Подсказка 1

Предположим, что не существует способа рассадить всех школьников по двум аудиториям так, чтобы в каждой аудитории сидел хотя бы один школьник из каждой пятёрки сильнейших. Что в этом случае можно сказать про любой из способов?

Подсказка 2

В каждом способе найдется по крайней мере одна дисциплина, пятерка сильнейших по которой находится полностью в одном из кабинетов. Сколько всего существует способов рассадить школьников по двум аудиториям так, чтобы пятерка сильнейших по одному выбранному предмету сидела в одной из аудиторий?

Подсказка 3

Всего 2*2²⁵ способов. Сколько способов рассадить школьников по двум аудиториям так, чтобы существовала дисциплина пятерка сильнейших по одному которому сидела в одной из аудиторий?

Подсказка

Всего 15*2²⁶. Покажите, что это число меньше, чем общее количество способов рассадки школьников по двум аудиториям и завершите доказательство.

Показать ответ и решение

Всего способов рассадить школьников по двум разным аудиториям 230  (каждого из 30  школьников можно посадить в одну из двух аудиторий). Способов рассадить школьников по аудиториям, при которых по конкретному предмету в какой-то из аудиторий нет сильнейших   25   26
2⋅2 = 2 ,  ведь можно двумя способами выбрать аудиторию, в которой не будет сильнейших по предмету, а остальных в любую из двух. Тогда способов рассадки, при которых в одной из аудиторий нет сильнейших хотя бы по одному из предметов не более     26
15⋅2 .  Отметим, что     26      26  30
15⋅2  <16⋅2  = 2 ,  а значит, в каком-то из способов не нашлось аудитории, в которой нет сильнейших ни по одному предмету.

Ответ:

Да, всегда

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!