Процессы и алгоритмы
Ошибка.
Попробуйте повторить позже
На плоскости даны точки общего положения, одна из них синяя, остальные красные. Докажите, что количество треугольников с вершинами в красных точках, содержащих синюю, чётно.
Проведем всевозможные отрезки между красными точками. Они в пересечение образовали несколько частей. Будем называть соседними части, если они имеют общую сторону. Внешнюю часть будем тоже считать частью. Заметим, что если синяя точка лежит в внешней части, то она лежит в четном количестве треугольников, а именно в Будем доказывать, что если передвинуть точку в соседнюю часть, то количество треугольников, в которых она содержится, изменится на четное число. Пусть общая сторона соседних частей лежит на отрезке Тогда если рассмотреть все треугольники, которые не содержат сторону то они либо содержат обе эти соседние части, либо не содержат. Поэтому нам интересны только треугольники с стороной При переходе из одной части в другую количество треугольников содержащих точку меняется на где количество вершин с одной стороны от а по другую. Учитывая, что мы получаем, что тоже четное.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!