Процессы и алгоритмы
Ошибка.
Попробуйте повторить позже
Степень каждой вершины графа не превосходит Докажите, что все вершины этого графа можно раскрасить в четыре цвета так, что
количество отрезков с одноцветными концами будет не более, чем количество вершин.
Давайте как-нибудь раскрасим вершины. Рассмотрим произвольную вершину и её соседей. По приницпу Дирихле найдётся цвет
в
который покрашены не более двух её соседей. Если
не цвета
и при этом соединена с хотя бы тремя вершинами её цвета, то
мы можем её перекрасить в
тем самым уменьшив количество одноцветных рёбер. Если делать такие операции, рано
или поздно мы получим граф, в котором каждая вершина является концом не более двух одноцветных рёбер. Это даёт
требуемое.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!