Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела логика
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67766

Каждое натуральное число покрасили в один из трёх цветов: красный, синий или зелёный, причём все 3 цвета встречаются. Может ли оказаться так, что сумма любых двух чисел разных цветов является числом оставшегося цвета?

Источники: Высшая проба - 2023, 11.1 (см. olymp.hse.ru)

Подсказки к задаче

Подсказка 1

Если ответ да, то как доказать, что такое возможно? Привести пример раскраски... Вроде как сходу такую раскраску придумать не получается. Может тогда воспользоваться методом от противного...

Подсказка 2

Пускай такая раскраска существует. Разумно было бы посмотреть на подряд идущие числа: ведь если они разного цвета, то их разность обязана быть покрашена в оставшийся цвет. А их разность это всегда 1

Подсказка 3

Возьмем числа 1 и n такие, что их цвета не совпадают. Тогда числа 1, n и n+1 покрашены в три различных цвета. Может попробовать пойти дальше и посмотреть на n+2? Какой же цвет имеет n+2=1+(n+1)? А n+3=1+(n+2)?

Подсказка 4

Получается, что n+2 имеет цвет числа n, а n+3 имеет цвет числа n+1. Похоже, что мы больше никогда не увидим число, цвет которого совпадает с цветом числа 1:( А может ли быть такое?

Подсказка 5

Такого, конечно же, не может быть: достаточно просто посмотреть на цвет числа 2n+1=n+(n+1)

Показать ответ и решение

Пойдём от противного, предположим, что такое возможно. Без ограничения общности можно считать, что число 1 покрашено в красный. Выберем произвольное число x,  покрашенное в синий. Заметим, что тогда x +1  должно быть зелёного цвета, (x +1)+ 1= x+ 2  — синего, (x+ 2)+ 1= x+ 3  — зелёного и т.д. Таким образом, все числа, большие x,  покрашены в синий или зелёный цвет. С другой стороны, так как x  покрашен в синий цвет, a x +1  — в зелёный, то число (x+ 1)+x =2x+ 1  должно быть покрашено в красный цвет, противоречие. Значит, такое невозможно.

Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!