Тема . Физтех и вступительные по математике в МФТИ

Планиметрия на Физтехе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#135352

Прямая, параллельная биссектрисе AX  треугольника ABC,  проходящая через середину M  его стороны BC,  пересекает сторону AB  и продолжение стороны AC  в точках Z  и Y  соответственно. Найдите BC,  если AC = 18,  AZ =6,  Y Z = 8.

Источники: Физтех - 2024, 10.4 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Нетрудно заметить, что BC = 2BM = 2CM. Значит, мы можем найти какую-то из сторон BM и CM, а потом и BC. Какое дополнительное построение можно сделать?

Подсказка 2

Попробуем провести среднюю линию MN, параллельную стороне AB. Здесь уже можно заметить подобные треугольники и найти какие-то равные углы или стороны. Какие?

Подсказка 3

Нам интереснее всего посмотреть на равнобедренный треугольник AYZ, подобный YNM, и найти в нем какие-то углы, стороны. А отсюда сможем найти и NM из треугольника YNM.

Подсказка 4

Посмотрим на треугольник CNM: в нем мы знаем две стороны. Что еще мы можем в нем найти?

Подсказка 5

Мы можем выразить косинус угла между найденными сторонами, так как из треугольника AYZ уже знаем косинус половинного угла. Значит, мы можем применить теорему косинусов и найти CM, а это именно то, что нам нужно!

Показать ответ и решение

Обозначим ∠BAC = 2α.  Тогда ∠BAX = ∠CAX  =α,  за счёт параллельности AX  и MY  получаем ∠AY Z =∠CAX  = α,  ∠AZY  =∠BAX  =α.

Пусть MN  — средняя линия треугольника ABC,  параллельная стороне AB.

Тогда ∠NMY  = ∠AZY = α.  В треугольниках MNY  и AZY  есть по два угла, равных α.  Значит, они оба равнобедренные и подобны друг другу. Из треугольника AY Z  находим, что

      Y Z   2
cosα= 2-⋅AZ-= 3

PIC

Заметим также, что ∠CNM  = 2α,  как внешний угол треугольника MNY,

CN = 1AC =9
     2

                    AC-
MN  =NY  =AN + AY =  2 + AZ = 15

Кроме того,

          2       1
cos2α =2cos α− 1= −9

По теореме косинусов для треугольника MNC  получаем:

   2     2     2                                ( 1)
MC  = MN  + CN  − 2MN ⋅CN  ⋅cos2α= 225 +81− 2⋅15⋅9⋅ −9  = 336

             --
BC = 2MC = 8√21
Ответ:

 8√21

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!