Планиметрия на Физтехе
Ошибка.
Попробуйте повторить позже
Окружности и
касаются в точке
внутренним образом. Отрезок
— диаметр большей окружности
а хорда
окружности
касается
в точке
Луч
повторно пересекает
в точке
Прямая, проходящая через точку
перпендикулярно
повторно пересекает
в точке
Найдите радиусы окружностей, угол
и площадь треугольника
если известно, что
Источники:
Подсказка 1
У нас на картинке есть пара касающихся окружностей. В такой ситуации бывает полезно отметить центры этих окружностей: пусть Q- центр w, а O- центр Ω. Что мы можем сказать про точки A, O, Q и B?
Подсказка 2
Верно, они лежат на одной прямой! Мы знаем, что ∠ACB=90° (AB- диаметр Ω) и ∠QDB=90° (BD- касательная к w). Тогда △BQD и △BAC- подобны. Что это нам дает?
Подсказка 3
Давайте обозначим за R- радиус Ω и r- радиус w. Тогда т.к. BQ/BA=BD/BC=13/18 ⇒ (2R-r)/2R=13/18 ⇒ r/R=5/9. Надо как-то посчитать радиусы. Давайте обозначим за K- вторую точку пересечения BA с w. Воспользуйтесь теоремой о касательной и секущей...
Подсказка 4
BD²=BK*BA=(2R-2r)*2R ⇒ R=39/8 и r=65/24. Теперь нам надо найти уголочек ∠FAE. Мы видим, что он равен половине суммы дуг AC и CE окружности Ω. Но половинка дуги AC равна уголочку ∠ABC, а его мы можем найти. Давайте тогда обозначим его за ψ. Чему равен уголок ∠QAD (сначала найдите ∠AQD)?
Подсказка 5
Т.к. ∠AQD- внешний для треугольника BQD, то ∠AQD=90°+ψ. Видно, что отрезки AQ и QD равны как радиусы ⇒ ∠QAD=45°-ψ/2 ⇒ дуга EB=2*∠QAD=90°-ψ. Дуга AB=180° и AB=AС+CE+BE ⇒ CE=90°-ψ ⇒ ∠AFE=(2ψ+90°-ψ)/2=45°+ψ/2. Что мы можем сказать про уголок ∠FAE?
Подсказка 6
Т.к. AC // FE ⇒ дуга AF равна дуге CE и равна 90°-ψ ⇒ дуга FE равна FA+AC+CE=90°-ψ+2ψ+90°-ψ=180° ⇒ ∠FAE=90°. Тогда в прямоугольном треугольнике △FAE мы знаем гипотенузу FE (FE=2R) и острый угол ∠AFE=45°+ψ/2 (ψ можно найти из прямоугольного треугольника △ABC). Я не сомневаюсь в том, что вам под силу довести решение до конца!
Обозначим , а радиусы
и
через
и
соответственно. Пусть
и
— центры окружностей
и
соответственно;
— точка пересечения
и
, отличная от
Отметим, что (касательная
перпендикулярна радиусу
) и
(угол вписан в окружность
и
опирается на её диаметр). Значит, треугольники
и
подобны (по двум углам). Отсюда
По теореме о касательной и секущей
Следовательно,
Далее находим углы и дуги:
Следовательно,
Угол
известен, так как
Значит,
Перейдём к нахождению площади. Треугольник прямоугольный
как вписанный угол, опирающийся на диаметр),
поэтому
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!