Планиметрия на Высшей пробе
Ошибка.
Попробуйте повторить позже
Через вершины треугольника проведены три параллельные прямые
соответственно, не параллельные сторонам
треугольника. Пусть
— середины сторон
Пусть
— точки пересечения пар прямых
и
и
и
соответственно. Докажите, что прямые
и
пересекаются в одной
точке.
Источники:
Подсказка 1
Какая теорема позволяет доказывать пересечение трёх прямых в одной точке? Если бы эти прямые были чевианами одного треугольника...
Подсказка 2
Обратная теорема Чевы! Нам нужно проверить выполнение условий этой теоремы для треугольника A₀B₀C₀. Тогда что можно сделать, чтобы найти отношения отрезков на сторонах этого треугольника?
Подсказка 3
Что-то не очень удобно искать эти отношения... А как можно перенести отношения отрезков на более удобную прямую?
Подсказка 4
Переносим отношения мы с помощью теоремы Фалеса, а перенести всё на прямую поможет ортогональная проекция на прямую, которая перпендикулярна нашим прямым a, b, c! Ведь в такой проекции середины сторон треугольника перейдут в середины отрезков!
Подсказка 5
Верно, можно ввести систему координат. Нужно только правильно выбрать оси, чтобы все нужные нам отрезки легко находились!
Заметим, что если доказать обратную теорему Чевы для треугольника (то есть равенство
то мы
получим требуемое. Обозначим параллельные прямые через
и
Давайте проведём прямую перпендикулярную прямым
и спроецируем ортогонально точки
на неё. Нам
это выгодно, потому что отношение, в которых делит точка отрезок при проектировании, как известно, сохраняется (это просто теорема
Фалеса). Точки
и
перейдут в
и
Введём декартову систему координат таким образом, что прямая — ось
а прямая
— ось
Обозначим ординату
через
а ординату
через
Точка
при проецировании переходит в точку
точка
— в точку
точка
— в точку
Как мы знаем, отношения при проектировании сохраняются, а значит, нам достаточно доказать, что
Нетрудно видеть, что длина любого отрезка из равенства равна модулю разности ординат его концов, поэтому его можно записать в таком виде:
Теперь видно, что всё сокращается, а значит, мы получили требуемое.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!