Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела высшая проба
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80740

В выпуклом четырёхугольнике ABCD  выполнено AB = BC = CD  . Его диагонали AC  и BD  пересекаются в точке E  . Описанная окружность треугольника ADE  пересекает сторону AB  в точке P ⁄= A  и продолжение стороны CD  в точке Q⁄= D  . Найдите отношение отрезков AP  и DQ  .

Показать ответ и решение

Первое решение.

Из вписанности четырехугольника APED  следует, ∠P AE = ∠EDP  . Треугольник ABC  является равнобедренным, а значит, ∠BAC  =∠BCA  , следовательно, ∠BCA = ∠BDP  .

Из равнобедренности треугольника следует, что ∠DBC = ∠CDB  .

PIC

Наконец, в силу вписанности четырехугольника AEDQ

∠PDC = ∠PDB + ∠BDC = ∠BCE + ∠DBC = ∠CED  =∠AQD

Из этого равенства углов получаем, что вписанный четырёхугольник AP DQ  является равнобедренной трапецией либо прямоугольником. В любом случае AP = DQ,  то есть

AP :DQ  =1 :1

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

Докажем, что хорды AP  и QD  стягивают равные дуги в окружности (AED )  , то есть докажем равенство

∠P EA =∠QED

Для начала, по теореме о внешнем угле ∠PEA = ∠BPE − ∠PAE.  А поскольку треугольник ABC  является равнобедренным, то ∠BAE  =∠BCE.  Кроме того, из вписанности четырехугольника APED  следует ∠BPE = ∠EDA  . Таким образом,

∠PEA = ∠BP E− ∠PAE = ∠EDA − ∠BCE

Аналогично

∠DEQ = ∠DAE − ∠EBC

PIC

Наконец, искомое равенство углов можно переписать в виде

∠EDA − ∠BCE = ∠DAE − ∠EBC

∠EDA  +∠EBC  =∠DAE  +∠BCE,

что верно, так как суммой углов в каждой части равна углу между диагоналями четырехугольника.

Ответ: 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!