Теория чисел на Высшей пробе
Ошибка.
Попробуйте повторить позже
В последовательности чисел Фибоначчи каждое следующее число, начиная с третьего, равно сумме двух предыдущих. Докажите, что среди чисел Фибоначчи нет ни одной натуральной степени числа
Подсказка 1
Какое первое число в последовательности чисел Фибоначчи кратно 7? Чему равен его индекс?
Подсказка 2
Первое число Фибоначчи, кратное 7 - это 21, которое является 8 числом Фибоначчи. Продолжив выписывать элементы данной последовательности можно заметить, что первые несколько членов, индексы которых кратны 8, делятся на 7. Докажите, что на 7 делятся те и только те члены последовательности чисел Фибоначчи, индексы которых кратны 8. Как можно доказать, что никакое из данных чисел не является степенью 7?
Подсказка 3
Показать, что каждое из них имеет простой делитель отличный от 7. Можно ли это сделать, найдя зависимость делимости членов последовательности от их индекса, аналогичную уже полученной?
Подсказка 4
Да, достаточно показать, что на 3 делятся те и только те числа Фибоначчи, номер которых делится на 4.
Для начала докажем, что на делятся те и только те числа Фибоначчи, номер которых делится на Докажем это по индукции. База: Первое число Фибоначчи, кратное — это которое является числом Фибоначчи.
Переход: Пусть этот факт был верен для всех чисел Фибоначчи с номерами от до Докажем, что он верен для чисел от до Пусть число с номером имело остаток от деления на Тогда числа с номерами будут иметь следующие остатки:
Теперь докажем, что на делятся те и только те числа Фибоначчи, номер которых делится на Доказательство аналогично.
Следовательно, если число Фибоначчи делится на то его номер делится на Значит его номер делится на а значит, само число обязано делиться на Значит оно не может быть равно натуральной степени числа
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!