Тема . Текстовые задачи на конструктивы в комбе

Шаг за шагом

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела текстовые задачи на конструктивы в комбе
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#33811

Придумайте 3  различных натуральных числа таких, чтобы каждое делило сумму двух оставшихся.

Показать ответ и решение

Объясним, как можно придумать этот пример. Наибольшее число должно делить сумму двух остальных. Но тогда сумма двух оставшихся чисел должна равняться наибольшему. Значит, наши числа — a  , b  и a+ b  . При этом нам нужно, чтобы a+ 2b  делилось на a  . Возьмем a =1  , ведь тогда любое число делится на a  . Осталось добиться того, чтобы 2a+ b= 2+ b  делилось на b  . Тогда 2  делится на b  , значит, надо взять b= 2  .

Ответ: 1,2,3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!