Шаг за шагом
Ошибка.
Попробуйте повторить позже
Придумайте различных натуральных числа таких, чтобы каждое делило сумму двух оставшихся, и при этом все числа были больше .
Рассмотрим пример к предыдущей задаче. Он всем хорош, кроме того, что числа слишком маленькие. Заметим, что если мы все числа умножим на одно и то же число , то условие делимости продолжит выполняться. В самом деле, мы сумму двух чисел домножим на и число, делимость на которое должна выполняться, домножим на , тогда на можно будет сразу сократить и получить исходную делимость. Поэтому достаточно наш пример , и домножить на любое число, большее . В нашем случае мы домножили на .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!