Соответствия, сравнения, количества
Ошибка.
Попробуйте повторить позже
Назовём лабиринтом шахматную доску где между некоторыми полями вставлены перегородки. Если ладья может обойти все поля,
не перепрыгивая через перегородки, то лабиринт называется хорошим, иначе — плохим (ладья не может перепрыгивать через перегородки).
Каких лабиринтов больше — хороших или плохих?
Подсказка 1
Клетки, между ними перегородки, что-то это напоминает... Да! Давайте введём граф, клетки — его вершины, рёбра — общие стороны, при этом перегородка убирает ребро. Тогда хорошему лабиринту соответствует связный граф!
Подсказка 2
Давайте подумаем, сколько перегородок содержит хороший лабиринт. Действительно, хороший лабиринт содержит не более 49 перегородок.
Подсказка 3
Определим инвертированный лабиринт — уберём рёбра в исходном графе и добавим те, которых раньше не было. Теперь постараемся сравнить количество обычных лабиринтов и инвертированных.
Первое решение. Пусть — количество всех лабиринтов. Давайте рассмотрим плохие лабиринты, в которых огорожена какая-нибудь
угловая клетка. Заметим, что таких плохих лабиринтов ровно
В силу того, что нам нужно поставить две перегородки.
Следовательно, хороших, в которых не огорожена эта угловая клетка точно меньше, чем
Аналогично количество хороших
лабиринтов, у которых не огорожено две угловых клетки точно меньше, чем
а у которых не огорожено три
угловых клетки точно меньше, чем
Следовательно, хороших точно меньше половины, а значит, плохих
больше.
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение. Давайте думать о клетках, как о вершинах графа. Ребра будут общими сторонами, а если есть перегородка, то ребро
убираем. Хорошим лабиринтам соответствует связный граф. Заметим, что в связном графе на вершинах должно быть хотя бы
ребра. А значит, хороший лабиринт содержит не более
перегородок. Давайте рассмотрим какой-нибудь лабиринт и определим
для него инвертированный лабиринт, то есть в нашем графе мы убираем ребра и добавляем ребра, которых не было. Тогда мы получаем
соответствие лабиринтов с
перегородками лабиринтам с
перегородками. То есть каждому хорошему
лабиринту мы точно сопоставили плохой. А у нас точно еще есть плохие лабиринты, поэтому плохих лабиринтов точно
больше.
Плохих
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!