Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела множества
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92113

Найдите сумму всех двузначных чисел, состоящих из одной чётной цифры и одной нечётной цифры (чётные цифры — это 0,2,4,6,8  , нечётные — все остальные).

Источники: ДВИ - 2024, вариант 243, задача 2 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Попробуем выписать такие числа подряд! Какую закономерность можно заметить?

Подсказка 2

Выпишите подряд подходящие числа, у которых первая цифра нечётная, и отдельно, у которых первая цифра чётная! Сколько подходящих чисел в каждом десятке?

Подсказка 3

Группировка слагаемых поможет нам быстро справиться с вычислениями)

Показать ответ и решение

Первое решение.

Если цифра в разряде десятков нечётна (таких случаев 5), то каждому подходящему числу можно сопоставить неподходящее число на единицу больше. В каждом таком десятке будет 5 пар, поэтому сумма неподходящих чисел в таких десятках на 5 ⋅5 =25  больше.

Если цифра в разряде десятков чётна (таких случаев 4, потому что 0 не может быть числом десятков двузначного числа), то каждому подходящему числу можно сопоставить неподходящее число на единицу меньше. В каждом таком десятке будет 5 пар, поэтому сумма неподходящих чисел в таких десятках на 5⋅4= 20  меньше.

В итоге сумма S  подходящих на 25− 20= 5  меньше, чем сумма неподходящих. Так как все двузначные числа учитываются приведённым соответствием, то получаем уравнение

                         90(10 +99)
S+ (S+ 5) =10+ 11+...+99= ----2----= 4905

S =2450

Второе решение.

Отдельно сгруппируем суммы подходящих чисел с первой нечётной цифрой и отдельно с первой чётной, а далее заметим, что в каждом десятке по 5 подходящих чисел

(10+ 12+14+ 16+ 18+ 30+ 32+...+98)+(21+ 23 +25+ 27+29+ 41+ ...+89)=

5((10+ 30+ 50 +70+ 90)+ (0+2 +4+ 6+ 8))+ 5((20+ 40+60+ 80))+ 4(1+3 +5+ 7+ 9)=

5⋅(250+ 20+200)+ 4⋅25 =5⋅490= 2450
Ответ: 2450

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!