Тема . ММО (Московская математическая олимпиада)

Теория чисел на ММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ммо (московская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92992

Что больше: 20112011+ 20092009  или 20112009 +20092011?

Подсказки к задаче

Подсказка 1

Неравенства a > b и a - b > 0 эквивалентны. Попробуем вместо сравнения исходных чисел сравнить их разность с нулем. Как можно преобразовать разность, чтобы было удобно ее оценивать?

Подсказка 2

Конечно! Перегруппируем слагаемые так, чтобы получилась разность двух скобок, внутри каждой у степеней одинаковое основание, а затем вынесем общий множитель. Как теперь сравнить числа?

Подсказка 3

Верно! Используем, что 2011 > 2009 и докажем, что в разности какое-то из чисел больше.

Показать ответ и решение

Запишем разность двух чисел, которые хотим сравнить, и преобразуем её:

   2011     2009      2011     2009
2011   + 2009   − (2009   + 2011   )=

     2011     2009      2011     2009
= 2011   − 2011   − (2009   − 2009   )=

= 20112009(20112− 1)− 20092009(20092− 1)

Заметим, что 20112009 > 20092009 >0  и 20112− 1 >20092− 1 >0.  Следовательно, уменьшаемое больше вычитаемого, то есть разность положительна. Значит, первое число больше, будет знак > .

Ответ:

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!