Тема . ММО (Московская математическая олимпиада)

Планиметрия на ММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ммо (московская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71792

Точка M  — середина стороны BC  треугольника ABC.  Окружность ω  проходит через точку A,  касается прямой BC  в точке M  и пересекает сторону AB  в точке D,  а сторону AC  — в точке E.  Пусть X  и Y  — середины отрезков BE  и CD  соответственно. Докажите, что окружность, описанная около треугольника MXY,  касается ω.

Источники: ММО - 2021, 9.4 (см. mmo.mccme.ru)

Показать доказательство

PIC

Заметим, что MX  и MY  — средние линии треугольников BCE  и BCD,  поэтому ∠XMB  =  = ∠C  и ∠CMY  = ∠B.  Тогда

∠Y MX = 180∘ − ∠XMB − ∠CMY  =∠A

По свойству касательной и секущей к окружности имеем BM2 = BD ⋅BA,  откуда

              2
MY  = B2D-= B2MAB-

Аналогично получаем

MX = CM2-
     2AC

Деля одно на другое и пользуясь тем, что BM = CM,  находим

MY-- BM2-  2AC-  AC-
MX = CM2  ⋅2AB = AB

Получаем, что треугольники BAC  и XMY  подобны по углу и отношению прилежащих сторон.

Тогда ∠XY M = ∠ACB  =∠XMB.  Получается, что в описанной окружности треугольника XMY  угол, опирающийся на хорду XM,  равен углу между хордой XM  и прямой BC.  Это значит, что прямая BC  касается окружности, описанной вокруг треугольника XMY.  Следовательно, рассматриваемые окружности касаются.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!